Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico

نویسندگان

  • Mikhail Urbazaev
  • Christian Thiel
  • Felix Cremer
  • Ralph Dubayah
  • Mirco Migliavacca
  • Markus Reichstein
  • Christiane Schmullius
چکیده

BACKGROUND Information on the spatial distribution of aboveground biomass (AGB) over large areas is needed for understanding and managing processes involved in the carbon cycle and supporting international policies for climate change mitigation and adaption. Furthermore, these products provide important baseline data for the development of sustainable management strategies to local stakeholders. The use of remote sensing data can provide spatially explicit information of AGB from local to global scales. In this study, we mapped national Mexican forest AGB using satellite remote sensing data and a machine learning approach. We modelled AGB using two scenarios: (1) extensive national forest inventory (NFI), and (2) airborne Light Detection and Ranging (LiDAR) as reference data. Finally, we propagated uncertainties from field measurements to LiDAR-derived AGB and to the national wall-to-wall forest AGB map. RESULTS The estimated AGB maps (NFI- and LiDAR-calibrated) showed similar goodness-of-fit statistics (R2, Root Mean Square Error (RMSE)) at three different scales compared to the independent validation data set. We observed different spatial patterns of AGB in tropical dense forests, where no or limited number of NFI data were available, with higher AGB values in the LiDAR-calibrated map. We estimated much higher uncertainties in the AGB maps based on two-stage up-scaling method (i.e., from field measurements to LiDAR and from LiDAR-based estimates to satellite imagery) compared to the traditional field to satellite up-scaling. By removing LiDAR-based AGB pixels with high uncertainties, it was possible to estimate national forest AGB with similar uncertainties as calibrated with NFI data only. CONCLUSIONS Since LiDAR data can be acquired much faster and for much larger areas compared to field inventory data, LiDAR is attractive for repetitive large scale AGB mapping. In this study, we showed that two-stage up-scaling methods for AGB estimation over large areas need to be analyzed and validated with great care. The uncertainties in the LiDAR-estimated AGB propagate further in the wall-to-wall map and can be up to 150%. Thus, when a two-stage up-scaling method is applied, it is crucial to characterize the uncertainties at all stages in order to generate robust results. Considering the findings mentioned above LiDAR can be used as an extension to NFI for example for areas that are difficult or not possible to access.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory

The scientific community involved in the UN-REDD program is still reporting large uncertainties about the amount and spatial variability of CO2 stored in forests. The main limitation has been the lack of field samplings over space and time needed to calibrate and convert remote sensing measurements into aboveground biomass (AGB). As an alternative to costly field inventories, we examine the rel...

متن کامل

Improvement of Biomass Estimation in Forest Areas based on Polarimetric Parameters Optimization of SETHI airborne Data using Particle Swarm Optimization Method

Estimation of forest biomass has received much attention in recent decades. Airborne and spaceborne (SAR) have a great potential to quantify biomass and structural diversity because of its penetration capability. Polarizations are important elements in SAR systems due to sensitivity of them to backscattering mechanisms and can be useful to estimate biomass. Full Polarimetric Synthetic Aperture ...

متن کامل

Forest Biomass Estimation at High Spatial Resolution: Radar vs. Lidar sensors

This study evaluates the biomass retrieval error in pinedominated stands when using high spatial resolution airborne measurements from fully polarimetric L-band radar and airborne laser scanning sensors. Information on total aboveground biomass was estimated through allometric relationships from plot-level field measurements. Multiple linear regression models were developed to model relationshi...

متن کامل

Monitoring Forests: Parameters Estimation and Vegetation Classification with Multisource Remote Sensing Data

2 Acknowledgments 3 Table of contents 4 Chapter 1 Introduction 6 1.1 Thesis objectives, motivations and innovation 7 1.2 Materials and methods 15 1.2.1 The Sierra Nevada, U.S.A (study site 1) 16 1.2.2 The Alps, Bozen, Italy (study site 2) 16 1.2.3 Gola Rainforest National Park, Sierra Leone (study site 3) 17 1.3 Thesis outline 18 1.4 References 19 Chapter 2 – Remote sensing of forested landscap...

متن کامل

Advances in forest characterisation, mapping and monitoring through integration of LiDAR and other remote sensing datasets

The diversity of scales and modes in which ground, airborne and spaceborne LiDAR operate has increased opportunities for quantitatively assessing forest structure, biomass and species composition and obtaining more general information on dynamics and ecological/commercial value. However, the level of information extracted can be increased even further by integrating data from other sensor types...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018